一道IMO36不等式题的证明 ارمىتاشقۇل 2019-03-23 题解 / 数学 设a,b,c∈R+,abc=1a,b,c\in R_+,abc=1a,b,c∈R+,abc=1证明: ∑1a3(b+c)≥32\sum\frac1{a^3(b+c)}\geq\frac32 ∑a3(b+c)1≥23 有: ∑[1a3(b+c)+a(b+c)4]≥∑1a\sum[\frac1{a^3(b+c)}+\frac{a(b+c)}4]\geq\sum\frac1a ∑[a3(b+c)1+4a(b+c)]≥∑a1 故: ∑1a3(b+c)≥∑1a−∑ab2\sum\frac1{a^3(b+c)}\geq\sum\frac1a-\sum\frac{ab}2 ∑a3(b+c)1≥∑a1−∑2ab =∑1a−∑12c=∑12a≥12×3abc3=32=\sum\frac1a-\sum\frac1{2c}=\sum\frac1{2a}\geq\frac12\times\frac3{\sqrt[3]{abc}}=\frac32 =∑a1−∑2c1=∑2a1≥21×3abc3=23 证毕。 数学